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NOTATION

(1+v)pv2 (1+Ct 2 aozvd

iKQ A=ER 2

C - zo vd/E

c ,s Longitudinal, shear wave speeds

d Thickness of specimen

D Maximum transverse diameter of caustic curve

E Young's modulus

Ke Value of stress intensity factor obtained on the basis of an elastic
quasi-static crack model

KI(t) Instantaneous mode-I stress intensity factor

P(xl,x2 ) Point on reflector

P'(XI,X2) The image of P(xl, x2) on the screen

Q- 4ae - + a2)2

r Distance from crack tip to the extremity of the initial curve directly
ahead of the crack

R Plastic zone size

u3 Deformation of the surface of the planar solid along the x3 direction

V Crack tip speed

x3 - - f(xl,x2) Equation of the reflecting surface

Z = X1 + iX2  Acoessi af. -
HfTIS GR"Il

z - xi + ix2  MDC TAB

zi, x2 + iciL,s x2 - rL,s eioLs=~ X JtlStif ication

zo  Distance of screen to specimen

' Distribut~n/_

Greek Symbols

-[- 1/2Coe

CIL' s a I - = ., pecal

4= Yl + Q~iY2



K (+ V) p v2 C

v Shear modulus

v Poisson's ratio

P mass density

oo  Yield stress

*,* Longitudinal, shear displacement potentials
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Abs act

he shadow spots which are obtained in using the optical method of caustics

e xperimentally determine dynamic stress intensity factors are usually inter-

preted on the basis of a static elastic crack model. In this paper, an attempt

is made to include both crack tip plasticity and inertial effects in the analysis

underlying the use of the method in reflection. For dynamic crack propagaRtion in

* the two-dimensional tensile mode which is accompanied by a Dugdale-Barenblatt line

* plastic zone, the predicted caustic curves and corresponding initial curves are

studied within the framework of plane stress and small scale yielding conditions.

These curves are found to have geometrical features which are quite different from

those for purely elastic crack growth. Estimates are made of the range of system

parameters for which plasticity and inertia effects should be included in data

analysis when using the method of caustics. For example, it is found that the

error introduced through the neglect of plasticity effects in the analysis of data

will be small as long as the distance from the crack tip to the initial curve ahead

of the tip is more than about twice the plastic zone size. Also, it is found that

the error introduced through the neglect of inertial effects will be small as long

as the crack speed is less than about 20% of the longitudinal wave speed.
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1. Introduction

Progress toward understanding the phenomenon of dynamic crack propagation

in solids has been impeded by several complicating features which are encountered

in both analytical and experimental approaches. From the experimental viewpoint,

the inherent time dependence of the process requires that many sequential measure-

ments of field quantities be made in an extremely short time in a way which does

not interfere with the process itself. Furthermore, the place at which field

quantities are to be measured varies, often in a nonuniform way, during the course

of the process. Because of this complexity, most experimental techniques for

measuring crack tip stress and deformation fields during rapid fracture are based

on optics. Such methods have three main advantages: (i) the techniques are full-

field methods, i.e., the entire specimen is observed continuously and crack

paths need not be known a priori, (ii) there is no coupling between the optical and

mechanical processes, i.e., the method of measurement does not interfere with

the process being examined, and (iii) the response of an optical system is

essentially instantaneous on the time scale of mechanical rapid fracture events.

Several optical methods have been used during the past fifty years to measure

deformations in nominally elastic materials, and thereby to determine stress

fields. Most of the methods are based on light wave interference principles, and

their application has been confined to transparent materials, or to opaque

materials coated with transparent materials.

Recently, the optical method of caustics, or the shadow spot method, was

developed and applied in the investigation of nonuniform surface deformations

due to stress concentrations in deformed solids [1,2]. Details of the stress

field may then be inferred from shadow spot measurements on the basis of an

analytical model. The method of caustics is an exceptional method because it is

:1 , -. ....., , .. .. .. . .. . .. .. .. ., . .. . ..... . ..... ... .. . .. .. ... .. . .-. . . .. .. . ...
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based on the principles of geometrical optics, rather than light interference,

and it has been successfully applied to cases of both opaque and transparent

materials. The method was first used in a reflection arrangement by Theocaris

[2], who studied the stress singularity in the vicinity of a stationary crack

tip. Later, Theocaris and Gdoutos [3,4] applied the method of caustics in

reflection to experimentally examine the deformation fields near the tips of

stationary cracks in metal plates. In this case, which apparently was the

first application of the method to metal specimens, plastic deformation occurred

locally and the optical data were analyzed by assuming a plane stress Dugdale-

Barenblatt model for the crack tip plastic zones.

The method was first used in experiments involving very rapid crack propa-

gation and stress wave loading by Kalthoff and coworkers [51 and Theocaris and

coworkers [6,7], and more recently by Goldsmith [8]. In each case, it was

assumed that the elastic stress field near the tip of a rapidly growing crack

in a brittle solid has precisely the same spatial variation as the elastic

stress field near the tip of a stationary crack. That is, the influence of

inertial effects on the spatial dependence of the crack tip field was not taken

into account. More recently, several investigators have reanalyzed the method

of caustics as applied to rapid crack propagation in brittle materials, including

the effect of inertia on the spatial variation of the elastic crack tip stress

field. Kalthoff et al. [9] introduced an approximate correction factor to account

for the potentially large error introduced when the static local field is used

in data analysis. The exact equations of the caustic envelope formed by the

reflection of parallel incident light from the surface of a specimen containing

a rapidly growing crack were recently obtained by Rosakis [10] for mixed mode

plane stress crack growth. It was found that, for some typical laboratory
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materials used in crack propagation studies, the neglect of the influence of

inertia on the crack tip stress field could lead to errors of up to 30 to 40% in

the value of the elastic stress intensity factor inferred from the measured caustic

diameter. A similar analysis has also been discussed by Theocaris et al. [11].

In this paper, a first attempt is made at including plasticity effects in

the analysis underlying the optical method of caustics as applied in dynamic

crack propagation studies. The analysis is based on the one-dimensional line

plastic zone model of Dugdale and Barenblatt. For dynamic crack propagation in

the two-dimensional tensile mode which is accompanied by such a strip yield

zone, the sizes and shapes of the predicted caustic curves are studied. The

influence of material inertia and of the extent of the plastic zone on stress

intensity factor measurements are considered. The initial and caustic curves

are found to have geometrical features quite different from those present for

purely elastic crack growth, and the dependence of these features on crack

speed and plastic zone size is investigated.

In the following sections, the optical theory of caustics formed in reflection

is briefly reviewed, and those elements of a two-dimensional stress field which

are required in order to predict caustics are identified. Next, the means of

calculating these elements of the stress field for any steady-state elasto-

dynamic problem is outlined. The equations for the initial curve and the caustic

curve for steady mode I propagation of a crack with a strip yield plastic zone

are then determined, with the details of the stress analysis of the dynamic

Dugdale-Barenblatt model relegated to an Appendix. Finally, the influence of

plasticity and inertial effects on measured fracture parameters is considered.
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2. Formation of Caustics in Reflection

Consider a family of parallel light rays incident on the reflective surface

X3  - f(xI, X2) of an opaque material. See Fig. 1. Upon reflection from the

surface, the light rays will deviate from parallelism. (In practice, the intensity

of the reflected ray will be less than the intensity of the incident ray due to

random scattering). If certain geometrical conditions are met by the reflecting

surface, then the family of reflected rays will have an envelope in the form of

a three-dimensional surface in space. A section of such a surface is shown as

the dashed curve in Fig. 1. This surface, which is called the caustic surface,

is the locus of points of maximum luminosity (i.e., highest density of rays)

in the reflected field. The reflected rays are tangent to the caustic surface.

If a screen is positioned parallel to the (xl, x2 ) plane and so that it inter-

sects the caustic surface, then a cross-section of the caustic surface can be

observed as a bright curve (the so-called caustic curve) bordering a relatively

dark region (the shadow spot) on the screen.

Suppose that the incident ray which is reflected from the point P(xl, x2)

on the reflecting surface will intersect the screen at the image point P'(Xl, X2).

See Fig. 2. The (X1, X2) coordinate system is identical to the (xl, x2) system,

except that the origin of the former has been translated to the screen. The posi-

tion of the image point P' will depend on the slope of the reflecting surface

at P and on the normal distance zo between the screen and the reflecting

surface. It has been shown elsewhere (121 that the position of the image point

P' on the screen has coordinates

Xi xi ± 2zo(Bf/axi) (2.1)

where zo >> IfI. Equation (2.1) represents a mapping of points P of the



reflecting surface onto points P' of the screen. The choice of sign in

(2.1) depends on whether the image point is a real image in front of the reflect-

ing surface (+ sign) as is the case in Fig. 2 or a virtual image behind the reflect-

ing surface (- sign). The use of the virtual image has certain advantages in

experimental fracture mechanics, and the subsequent analysis will be based on

the choice of the negative sign in (2.1).

If the screen intersects a caustic surface in the reflected light field,

then the resulting caustic curve on the screen is a locus of points of multiple

reflection. That is, for those points on the caustic curve, the mapping (2.1)

is not invertible and the Jacobian of the transformation must vanish, i.e.,

i3(Xlx X2)

J(xl, x2) r (xlx2) (2.2)

The vanishing of the Jacobian is the necessary and sufficient condition for the

existence of a caustic curve. The points on the reflecting surface for which

J(xl, x2) - 0 are the points from which the rays forming the caustic curve are

reflected. The locus of these points on the reflecting surface is the so-called

initial curve.



3. Application of Caustics to Plane Stress Elastodynamics

Consider the two-dimensional elastic solid occupying the region R. See

Fig. 3. The outer boundary is subjected to traction and/or displacement boundary

conditions of a type to ensure uniqueness of solutions. Suppose that a planar

crack grows through the body, with the crack tip speed being v. Within the

framework of the theory of plane stress, the two-dimensional displacement vector

u is governed by the equation

V(V -U C2 V u(3.1)

where V is the two-dimensional gradient operator and the superposed dot denotes

time derivative. In terms of the elastic modulus E and Poisson's ratio V

the longitudinal and shear wave speeds for plane stress are ct - [E/(l - v2)p]l/2

and cs = [E/2(l + v)p]
1/2, respectively.

Any displacement vector which is derived from the longitudinal and shear

wave potentials * and i according to

u -V + V x , (3.2)

satisfies (3.1), provided that * and * satisfy the wave equations

_2 o~ , _2 o.* (3.3)

In plane stress, t has a single nonzero component which is here denoted by Il

Suppose now that the (xl, x2) coordinate system is fixed with its origin

at the moving crack tip and that it is oriented so that crack growth is in the

xi-direction. Furthermore, suppose that the crack grows with constant speed,

and that the goemetry and applied loading are steady (i.e., independent of time)

as seen by an observer moving with the crack tip. Under these circumstances, it

is expected that the complete elastodynamic field is steady, so that * and
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depend only on xl, x2 and () = - vD( )/ax1 . Under steady conditions, the

wave equations (3.3) reduce to

2 0 2 24 . 0

2 2 2
ax c ax2

(3.4)

x C ax2

But each of the reduced wave equations is clearly equivalent to Laplace's equation

with the x2 coordinates scaled by the factor a. in the first case and a. in

the second case, where

at (1 - v2/c )l/2  , -s " (I - v2/c )l/2  (3.5)

General solutions of (3.4) may be written immediately in the form

- Re[F(zt)] , - Im[G(zs)] (3.6)

where z. = xi + iM. x2  , zs = x1 + ias x2, and F and G are each an analytic

function of its complex argument in the region occupied by the body. In any given

problem, the analytic functions are determined by the boundary conditions. Although

(3.4)-(3.6) have been established with reference to crack growth, it should be

noted that these equations are valid for any steady plane stress elastodynamic

field.

Generally, for plane stress crack propagation in a body which is symmetric

about the crack plane, the deformation fields are a combination of two modes.

The tensile mode, or mode I, exhibits reflective symmetry with respect to the

crack plane, while the shearing mode, or mode II, is antisymmetric with respect

to the crack plane. For these cases

F(E Y , G(Es) -+ M (3.7)
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where the upper signs apply for mode I and the lower signs for mode II. The bar

denotes complex conjugate.

Consider now a plate which has uniform thickness d in the undeformed

state. If the plate is subjected to edge loading which results in a nonuniform

state of plane stress, then the thickness of the deformed plate is also nonuni-

form. In terms of the in-plane stress components the lateral contraction is

f(xl, x2) - - u3(xl, x2) - vd(all + 022 )/2E (3.8)

Clearly, the function f here is identified with the function f describing the

reflecting surface in section 2. It represents the shape of the originally

plane surface which is the reflecting surface.

In terms of the stress distribution, the equations of the mapping (2.1)

based on geometrical optics become

Xi - xi - C D(Oll + a 22 )/axi (3.9)

where C - zovd/E. Thus, determination of the first invariant of stress establishes

the mapping, even for dynamic problems.

In terms of the displacement potential 4, the first stress invariant is

a11 + 022 - E (3.10)

For a steady state deformation field translating in the xl-direction with speed

v, (3.4) may be employed to reduce (3.10) to

a + 022 (1 + v) 0 v
2 a20/Bx2 (3.11)

or, in terms of the analytic function F appearing in the general solution (3.6),

011 + " (1 + v)p v2 Re[F"(zt)] (3.12)

m1 2 ( .2
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If the differentiation indicated in (3.9) is performed and the result is expressed

in terms of the complex variables Z X + iX2 , z - xI + ix2 then the mapping is

Z - z - K (Re[F" (zt)] I i Im[F' (z.)]) (3.13)

where K - (1 + V) pv2C.

As noted in the preceding section, the condition for the existence of a

caustic curve on the screen at x3 - - zo is the vanishing of the Jacobian of

the transformation (3.13). With reference to (2.2), the condition J(xl, x2) - 0

.j specifies the initial curve on the plane of the specimen, and the corresponding

caustic curve on the screen is the map of the initial curve according to (3.13)

onto the plane of the screen. The condition that the determinant of the Jacobian

matrix must vanish is

J M 1 + <(l - a2) Re[F 4 (z.,)] - C12K 2 F4 (zt)I 2 - 0 (3.14)

where F4  is the fourth derivative of F with respect to its argument.

The equations (3.13) and (3.14) together describe the caustic curves formed

by reflection of parallel light from the surface of any planar elastic solid in

which the elastodynamic stress distribution is steady. For any particular case,

the analytic function F which appears in these equations must be determined

from the geometrical configuration of the body and the boundary conditions.

In the case of elastic crack propagation, the stress field has universal

spatial dependence in the vicinity of the crack tip. The only quantity which

varies from one specific case to another is a scalar amplitude, the so-called

elastic stress intensity factor, which is often the parameter of fundamental

interest in laboratory testing. In the context of equations (3.13) and (3.14),

the function F will be known up to a scalar multiplier, the stress intensity

factor. If the crack speed, geometrical parameters, and bulk material parameters



-10-

are known, the equations (3.13) and (3.14) then provide a relationship between a

characteristic dimension of the caustic curve and the corresponding value of the

stress intensity factor. Experimental measurement of this characteristic dimen-

sion provides the instantaneous value of the stress intensity factor. The tremen-

dous appeal of the method is due to the fact that it provides a direct measure of

the stress intensity factor in nominally elastic fracture. No measurement of

boundary conditions or field quantities is required. The optical singularity

on the screen provides the information necessary to determine the strength of the

mechanical singularity in the specimen (under the assumption that the theory

of plane stress provides an accurate picture of the three-dimensional deformation

field).
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4. Caustic Curves for the Line Plastic Zone Model

Analytical crack tip models of a one-dimensional zone of nonlinear material

response extending ahead of the tip have been proposed for a variety of physical

processes. Dugdale [131 proposed a model for plane stress fracture of ductile

sheets where the plastic zone is assumed to be confined to a narrow strip directly

ahead of the crack tip. The physical basis of the Dugdale model arises from the

through-the-thickness sliding off mode of deformation which has been observed

experimentally in cases of fully developed plane stress yielding. For the case

of pure cleavage tensile fracture, Barenblatt, et al. [14] introduced a model

for elastic crack propagation according to which prospective fracture surfaces

directly ahead of the tip separate by overcoming interatomic or intermolecular

forces. In both cases, the introduction of the cohesive forces serves to exclude

the existence of infinitely large crack tip stresses. The Dugdale-Barenblatt

model is analyzed as an elastic crack problem in which the crack is made effec-

tively longer by an amount R, the plastic zone size, with cohesive forces in

the plastic zone acting on the prospective crack surfaces so as to restrain the

opening. See Fig. 4 (a). Both the externally applied loads and the restraining

cohesive tractions result in stress singularities at the crack tip but, in general,

the singularities are of opposite sign. For given applied loading and cohesive

zone constitutive properties, the length of the plastic zone is then adjusted

so that the singularities cancel each other, or so that the total stress is

bounded everywhere. If small scale yielding conditions prevail then the applied

loading is completely specified by an equivalent elastic stress intensity factor,

which is denoted by KI for the plane tensile fracture mode.

The analysis of the strip yield model is based on the problem which is

represented in Fig. 4(b). The crack is in the plane Y2 - 0 and the actual
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crack tip is at Yi = 0. The (Yi, Y2) coordinate system is fixed with respect

to the tip which is moving with constant speed v in the yl-direction. The

plastic zone extends over the interval 0 < Yl < R. The derivation of the analytic

function F, which is required to determine the caustic curves, is shown in the

Appendix where the analysis follows closely the work of Willis [15]. For the

special case of ideal plasticity, in which the cohesive tractions which resist

crack opening in the plastic zone have the constant magnitude ao, the analytic

function F is given by

* 2o (1+0) 1/2

F"(z) - tan (4.1)

where
wK I - - 4 0Lt s - (1 + 02) 2
iRK Q (4.2)
8a

2

The quantity 0o  is identified as the uniaxial tensile flow stress of the material.

Note that the relationship (4.2) between the plastic zone size and the remote

stress intensity factor is identical to the corresponding result for quasi-static

deformations [161. However, the function F is different from the corresponding

quasi-static result.

Suppose now that a tensile crack is propagating in a polished plate specimen,

and that the specimen is illuminated by a beam of parallel light as indicated in

Fig. 1. The light will be reflected from the specimen surface and, under suitable

conditions, will form a caustic curve on a screen placed at a distance zo from

the midsurface of the specimen. The size and shape of the caustic curve will be

related to the functional form of F in (4.1), and will depend on the parameters

v, %, and KI. In what follows, the nature of the caustic curves corresponding

to dynamic crack growth accompanied by a strip yield plastic zone under small

scale yielding conditions is investigated. The investigation is based on the

I,
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analytic function F given in (4.1) and (4.2), on the equation of the initial

curve (3.14), and on the equation of the optical mapping (3.13).

Differentiation of (4.1) leads to

7 +a2 F R 112

F" (z) - - qz (4.3)
iairQz [z RJ

ao(1+a2) R1 / 2 ( - z 2

F4(z) R-3z/2) (4.4)
F4(z)Q z2 (z-R)3 2

The branch of (z - R)1/2  which is positive as z - along the positive real

axis of the z-plane is assumed. Next all lengths are normalized with respect

to the plastic zone size R, and a superposed carret is used to denote

normalized values of the length parameters, e.g., zg - z /R - rt exp(ie ). If

(4.4) is substituted into the equation for the initial curve (3.14), then the

result in nondimensional form is

J(r , ) -1 - A(l-a 2 ) Re[G( )] - a2A2 1G( )12 - 0 (4.5)

where J is now viewed as a function of the distorted polar coordinates. In (4.5)

G(z) - (3z/2-1) (4.6)

z2 (z1)
3 / 2

(11 )Pv'+as) a d(4.7)
AQ ER2

The mapping, which defines the caustic curves corresponding to the solution of (4.5),

is

xI=r cos et+ A

r rI (r22cos+1)1/4 (4.8a)

cos e + I tan-1 r Z sineI
L 2 r. ,rcoset-i/j

cX2- r sin e + .2
TI (r-2rIcose 1+) (4.8b)

.sin e +i tan-1 r sine,2 -;c ,osej
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The limiting behavior of the above equations as R + 0 and v 1 0 may

be checked against the previously derived results for R - 0 and v - 0. It

is easily shown that if R + 0 then (4.8) reduce to the equations (2.9) of [10]

which represent the caustic envelope for a dynamic mode I crack propagating in

a linear elastic solid. For R + 0 and v ) 0, (4.8) reduce to

the equation of a generalized epicycloid as predicted by the analysis of a

stationary crack in a linear elastic material [2].
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5. Results and Discussion

Fl Two parameters which seem to have fundamental significance in analyzing

the initial curves (4.5) and caustic curves (4.9) are the ratio of crack tip

speed to characteristic speed of the material and the ratio of initial curve

"size" to plastic zone size. The former parameter represents a measure of

the inertial effects, while the latter parameter represents a measure of the

influence of the crack tip plastic zone. Furthermore, the two parameters are

independent of each other, in the sense that either may be varied without in-

fluencing the other. Specifically, the inertial parameter is v/c . and the

plasticity parameter is r/R, which is understood to be the solution of (4.5)

for 0, 0. Thus, r/R is the ratio of the distance from the crack tip to the

extremity of the initial curve directly ahead of the crack tip and the length of

the plastic zone R.

The equation of the initial curve (4.5) was solved numerically by means of

the Newton-Raphson procedure. First, the value of e twas fixed, and then all

values of rp satisfying the resulting equation were determined by Newton-

Raphson iteration. This was done for a number of values of eIsufficient to

generate the initial curves.

The computed initial curves for the case of v/ct, . 0.2 are shown in

Fig. 5 for a range of values of rift. The geometrical features of the initial

curves are strikingly different from the features of an initial curve for an

elastic crack. For values of rift near to unity (e.g., rift - 1.2), the

individual singularities in the deformation field at the crack tip and the plastic

zone tip dominate. The initial curve consists of two disjoint lobes, each

roughly circular and centered at these two singularities. As rift becomes larger,

the shape of two lobes is distorted and they tend to approach each other.
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As seen in Fig. 5, the two lobes are almost in contact for r/R -1.32. When

rIR has increased to about 1.34, the two lobes have two common points. As

rIR increases beyond this critical value (e.g., to rfR - 1.35), the initial

curve again splits into two lobes. However, whereas the lobes are disjoint

for r/R < 1.34, - they are nested for r/R > 1.34. This nested structure is

II

* maintained as r/R is increased. For values of r/R large compared to one,

the shape of the outer lobe is essentially the correct shape for a dynamic

elastic crack. The inner lobe becomes very small compared to R as r/R

becomes large, and is finally reduced to a point as r/R . , n

It is a simple matter to prove that the initial curve (4.5) intersects the

plastic zone at two points for any value of r/R in the range 1 < r/R < ne On

tm(zt) - 0 and 0 < Re(z,) < 1, it is clear from (4.6) that Re(G) - 0, and

(4.5) takes on the simple form

(ct IA)-2 - IG(i 1)12  (5.1)

The left side of (5.1) is, in general, a bounded positive real number. From (4.6),

it can be seen that the right side of (5.1) equals zero if Re(s) - 2/3.

Furthermore, the right side of (5.1) increases monotonically from zero to arbitrarily

large values either as Re( ) increases from 2/3 to 1 or as Re(zt) decreases

iA

from 2/3 to 0. Thus, (5.1) always has one, and only one, root in the range

0 < Re(z t) < 2/3, and one, and only one, root in the range 2/3 < 0,e(i) < 1.

As r/R s ofthese two roots coalesce a it - 2/3. The coalescence of the

two roots as tht corresponds to the reduction of the inner loop of the

initial curve to a single point as the effects of plasticity disappear.

The caustic curves corresponding to the initial curves in Fig. 5 are shown

in Fig. 6. If the initial curve consists of disjoint lobes, then the resulting
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caustic consists of open curves (e.g., r/R 1.2 in Fig. 6). As r/R approaches

the transition value of 1.34, cusps are formed near the ends of the open curves.

When r/R reaches the critical value of 1.34, the gap between the open curves

which form the caustic closes, and as r/R increases beyond the critical

value (e.g., for r/R - 1.35), the cusped portion of the curve splits off from

the main caustic curve. A detailed view of these cusps for r/R - 1.35 is

shown in Fig. 7, where the corresponding angle on the initial curve is

identified for several points on the caustic. Note that the ends of the caustic

seem to correspond to the points where the initial curve intersects the plastic

zone. For r/R > 1.34, the cusped segment of the caustic arises from the

small inner loop of the initial curve, and the larger smooth portion of the

caustic arises from the outer loop of the initial curve. As r/R increases,

the small cusped segment of the caustic curve becomes smaller and separates

further from the main part of the caustic curve.
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6. Interpretation of Experiments

The following discussion is based on the assumption that, in the interpreta-

tion of experimental data, the size of the caustic curve is determined by the

distance between the two points on the curve which are furthest from the X1 - axis

on the screen. This distance will be denoted by D. For a purely elastic mode I

crack under quasi-static conditions, the relationship

[(azd)/ D] - 2.5928[(E fj (6.1)

between D and the mode I stress intensity factor KI is well-known. Although

the plastic flow stress oo appears in (6.1), it does so only through a factor

common to both sides of the equation. The form of (6.1) was chosen because the

results with plasticity effects included could be expressed best in terms of the

dimensionless quantities in square brackets in (6.1).

For a given crack tip speed v/cZ, both of the dimensionless quantities

D(E/0° Vzo d)
1/2  and (KI/%o)(E/0o V z° d)

1/ 4  can be determined in terms of

the parameter r/R, which is thus a parametric representation of the D versus

KI  relationship. If the parameter r/R is eliminated (a process which can only

be done numerically), then the relationship shown in Fig. 8 for four crack speeds

is established. It is important to note that r/R varies along each curve in

Fig. 8, in general decreasing from left to right. The dashed curve in Fig. 8 is

simply a graph of (6.1) which is valid for v/ct - 0 and r/R + - . As can be

seen, it fits very well with the computed result for v/ct - 0. It should perhaps

be restated here that D is assumed to be the observed caustic size, KI is the

remote elastic stress intensity factor within small scale yielding theory, and the

relationship shown in Fig. 8 is that predicted on the basis of plane stress theory,
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small scale yielding, and the Dugdale-Barenblatt one-dimensional plastic zone

model. It would appear from Fig. 8 that if experimental observations are confined

to cases for which (Ki/o)(E/0o v zo d)
1/ 4 is less than about 1.0, then plasticity

effects need not be taken into account in the interpretation of the observations.

The possiblity of adjusting the value of this nondimensional parameter simply by

changing zo  is only apparent because the value of this distance is not completely

arbitrary. In any experimental set-up for measuring stress intensity factors by

the method of caustics, the distance zo must be chosen so that the initial curve

lies In a region of the specimen near the crack tip where the K-dominated small

scale yielding solution accurately represents the stress field. It is also observed

that the influence of inertia on the D vs.' KI relationship is not large if v/ct

is less than about 0.2.

Suppose now that an observed caustic of size D is interpreted in two ways.

First, it is interpreted on the basis of an elastic crack model and quasi-static

conditions, and the inferred value of mode I stress intensity factor is Re.

Alternatively, the caustic is interpreted on the basis of a dynamic line plastic

zone model, and the inferred value of the mode I stress intensity factor in this

case is simply K. The ratio K/Ke as a function of r/R is shown in Fig. 9.

This result suggests that, as long as the extent of the initial curve ahead of the

crack tip is at least about twice the plastic zone size, the error introduced

through neglect of plasticity effects in the analysis of the data will be small.

Again, this observation is based on the condition that the initial curve lies in

a region of the specimen in which the K-dominated small scale yielding solution

accurately represents the stress field. A qualitative discussion of this point

is included in [17). For any extent of the plastic zone, inertial effects seem

to be important only for crack speeds in excess of 0.2 cl.

Finally, two photographs of caustic curves obtained in reflection for running
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fractures in steel specimens are shown in Figs. 10 and 11. These are preliminary

photographs taken in the process of developing an experimental apparatus, and a

full quantitative interpretation is not yet available. However, it does seem

that the caustics are elongated in the direction of crack growth, rather than

ciruclar as they would be for an elastic crack as in Fig. 12. The long tail behind

the main caustic curves is apparently due to the permanently deformed wake left

behind as the active plastic zone passes by a material point. The Dugdale-Barenblatt

crack tip plastic zone model does not include a plastic wake effect, and no quanti-

tative estimate of the relative size of the caustic associated with the wake region

is yet available. The fringes in the optical pattern of Fig. 10 seem to be due to

phase interference. The light source used to produce the photograph shown in

Fig. 10 was a laser which emits monochromatic, single phase light. The illumination

outside the caustic curve results from a double reflection or mapping. That is,

light waves reflected from both inside and outside the initial curve on the speci-

men strike the screen outside the caustic. Because of the deformation of the

specimen surface, however, the light rays reflected from inside the initial curve

travel a distance different from that travelled by the rays reflected from outside

the initial curve. This difference in path length leads to a difference in phase

at the screen which results in the observed phase interference pattern. Unlike

Figs. 10 and 12, no fringes appear in the photograph in Fig. 11 because the incident

light in this case was not single phase and no regular phase interference pattern

could be formed.
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7. Summary of Conclusions

For the line plas tic zone model, the geometrical features of the initial

and caustic curves are found to be strikingly different from the curves corre-

sponding to an elastic crack. In terms of the fundamental parameters r/R and

v/,,which were defined at the beginning of section 5, the following observations

are made:

1) With reference to the initial curve for v/cL M 0.2,

(i) for r/R near unity, two disjoint lobes centered at x1  0 and xl -R

are found.

(ii) as r/R increases from 1 to 1.34, the two lobes distort and approach

each other.

(iii) the two lobes make contact when r/R -1.34 and, as niR increases

beyond 1.34, the initial curve takes the form of two nested closed curves.

(iv) as r/R ->- the outer branch of the initial curve approaches the shape

appropriate for a dynamic elastic crack and the inner branch shrinks to a single

point on the line plastic zone.

2) With reference to the caustic curve for v/c. 0.2,

Mi for 1 < r/R < 1.34, the caustic consists of two open curves.

(ii) as r/R increases toward 1.34 cusps are formed at the ends of the open

curves and the separation distance between the two open curves decreases. The

separation distance vanishes when r/R - 1.34.

(iii) for rIR > 1.34 the main part of the caustic is an oval curve with

its longer axis in the direction of crack growth. A small secondary caustic,

arising from the inner loop of the nested initial curve, splits off from the

main caustic.

* (iv) as r/R the main part of the caustic approaches the shape
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appropriate for a dynamic elastic crack and the secondary caustic vanishes.

3) On the basis of the line plastic zone model, plasticity effects need not be

taken into account in analyzing experimental data for which (E/00 V z 0 d)1' (K1/a 0)

is less than about 1.0.

4) The error introduced through the neglect of plasticity effects in the analysis

of data will be small as long as the extent of the initial curve ahead of the

crack tip is more than twice the plastic zone size.

5) Inertial effects appear to be significant for crack speeds exceeding approximately

0.2 cl.
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Appendix

The objective here is to outline the derivation of the function F given in

(4.1). Consider the plane stress steady-state mode I crack propagation problem

represented in Fig. 4(b). Crack opening is resisted by normal tractions 0(yl)

within the cohesive zone of length R, and the crack faces are otherwise traction

free. Thus, the boundary conditions are

ii a(yl) , - R < Yl < 0

a 22(Y 1 , + 0) -)(A.1)
0 , - - < yl < - R

12(Yi, ± 0) - 0 , - < Yl < 0 (A.2)

Within the small scale yielding regime, the stress field at remote points is

required to be identical to the near tip elastic field for steady propagation of

an elastic crack. In terms of the general solutions for displacements potentials

(3.6), the condition at points remote from the crack tip is [18]

0+02 2 (l+V) (1+12)K

FG )- G (1(C ) (A.3)2a E QE (27rC) 1/2

as Id - where c " yl + ia 9 Y2.

In terms of displacement potentials * and I the boundary conditions (A.1)

and (A.2) are

1j~ + cis) 2~ + 2 -O(y1 ) (A.4)

2 2 2
2 a. + .r- -a-* -o 0(A.5)

aylyY 2  8 2 2
y2  y1

on - - < yl < 0, Y2 " ± 0. In terms of the analytic functions F and G in

(3.6), the boundary conditions take the form
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_i (yI ) 2.aS 1(yl
(1+a) y + (A. 6)

~~F 2ct -

+ [F"(yl) + 2  G.(yl) - 2 2 O(yl)

(I2 (+at ) v - (1+a S)

"(Yl ) + 2a G"(Yl)] 
(A.7)

2- g + (A. " -o

Both (A.6) and (A.7) are in the form of a Hilbert arc problem in analytic function

theory. The plus and minus signs indicate the limiting value of the quaaitities in

brackets obtained as Y2 + 0+ and Y2  0-, respectively. The solutions of the

Hilbert problems may be written in terms of two entire functions Hl and R2 as

follows,

C1+%~)

F"( ) + - G'(C) - H(C) (A.8)
2a
2a s  R 2 (sl /2 ds H 2(C0

F"() + 2-- G"(Q) 2 L _2  ) +
(+oa2w 1 a 2  (S+0 Ct12 C

S S

(A.9)

If G" is eliminated between (A.8) and (A.9) and if the asymptotic condition (A.3)

is imposed to determine the entire functions (HI - 0 and H2 - a constant), then

it is found that
2Cl+v)(l+a 2) -1 KI I f0 ('s)s/2d

S 1 ( CA.10)
QE C 17-/27 0 (+

Finally, R is chosen so that the limit as C 4 0 of the quantity in brackets

is zero. For the particular case of a perfectly plastic cohesive zone, a(yI) o.

In this case, the integral in (A.10) may be evaluated in terms of elementary
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functions, with the result that

F()tan'I 1/2l
)1 TQ

with 2
R irK1 (.2

8a 
2

0

The result (A.11) appears in the text as (4.1) with a minor translation of coordinates

in the y1-direction by an amount -R.
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Figure Captions

Figure 1 Schematic of the formation of the three dimensional caustic envelope
obtained by reflection.

Figure 2 Optical mapping of points P(xl, x2) of the surface of an illuminated
solid, to points P'(XI, X2) on a screen.

Figure 3 Configuration of a planar elastic solid containing a running crack,
at a fixed instant of time.

Figure 4 The line plastic zone crack tip model.

Figure 5 Initial curves at the tips of steadily propagating cracks for five
values of r/R.

Figure 6 Caustic curves formed by reflection from the near tip region of
steadily propagating cracks corresponding to the initial curves of
Figure 5.

Figure 7 A detailed view of the cusped portion of the caustic curve for
r/R - 1.35, v - 0.20 c,, shown in Figure 6.

Figure 8 Variation of the dimensionless maximum transverse diameter of the
caustic curve, vs. the normalized remote elastic stress intensity
factor, presented for a range of crack velocities.

Figure 9 Error introduced in the inferred value of K through neglect of
both material inertia and plasticity effects in the analysis of
experimental data.

Figure 10 Caustic formed in reflection at the tip of a propagating crack in
a metallic specimen using single phase, monochromatic light.

Figure 11 Caustic formed in reflection at the tip of a propagating crack in
a metallic specimen using white light.

Figure 12 Caustic at a stationary crack tip in the form of an epicycloid as
predicted by elastic static analysis.
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